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Abstract
This paper presents the optimization of process parameters for multi-response characteristics of Fused
Deposition Modelling (FDM) using Grey Fuzzy Relational Analysis (GFRA) on PETG material. The
study focuses on minimizing dimensional error while maximizing tensile strength and ductility in the
FDM process. The process parameters considered include layer thickness (Lt), build orientation (Bo), fill
density (Fd), and fill pattern (Fp), which are investigated using the Taguchi L9 orthogonal array. The
goal is to achieve an optimal balance between minimal dimensional error and maximum tensile strength
and ductility. By analyzing the response characteristics with Grey Relational Grade (GRG) and Grey
Fuzzy Relational Grade (GFRG), the best combination of input parameters is identified. Analysis of
variance (ANOVA) reveals that Bo and Fd are the most significant factors influencing the mechanical
properties.

Keywords: Fused Deposition Modelling, polymers, Grey Relational Analysis, Fuzzy 
Grey Relational Grade, tensile strength

1. Introduction

The primary goal of manufacturing industries is to reduce production costs while maintaining the
required mechanical properties of parts. This has led many sectors to transition from traditional
manufacturing methods to additive manufacturing (AM) processes. Introduced in the 1980s, AM
is  classified  into  four  major  categories  based  on  the  manufacturing  method:  Selective  Laser
Sintering (SLS), Laminated Object Manufacturing (LOM), Stereo lithography (SLA), and Fused
Deposition Modelling (FDM) [1].

FDM,  introduced by  S.  Scott  Crump in  the  1990s,  co-founder  of  Stratasys  Inc.,  has  gained
popularity due to its ability to create complex geometries, eliminate the need for dies and molds,
and offer low system costs and maintenance compared to other methods [2]-[3]. Despite these
advantages, FDM has some limitations, including lower dimensional accuracy and surface finish
[4].

FDM-produced parts are typically anisotropic in nature and do not match the precision or surface
quality of injection-molded parts [5-9]. Issues such as lower dimensional accuracy [10] and the
staircase  effect  [11-19]  are  common.  Additionally,  FDM  is  a  slower  process  than  injection
molding, often requiring more time and effort to reduce manufacturing defects [20-23].
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Over the last decade, numerous studies have focused on improving the quality of FDM-produced
parts. Due to the large number of process parameters involved, it is challenging to analyse their
combined effects on material properties and dimensional accuracy. Design of Experiments (DOE)
is  widely  used  to  streamline  testing  and  analysis  procedures.  Other  methods,  including  full
factorial designs, ANOVA, bacteria forging techniques, and fuzzy logic, have also been explored
to optimize the process. Some studies, such as the work by Jaya Christiyan et al. [25], focus on
individual parameters like build orientation, layer thickness, and printing speed, which have been
shown to influence mechanical properties such as tensile and flexural strength.

Other  research  has  explored  the  effect  of  multiple  process  parameters.  Godfrey  et  al.  [26]
examined the impact of five parameters—layer thickness (Lt), build orientation (Bo), raster angle
(Ra),  raster  width  (Rw),  and  air  gap  (Ag)—on  tensile  strength,  while  Tanoto  et  al.  [27]
demonstrated how print orientation affects tensile strength and processing time. Sahu et al. [28]
focused on dimensional accuracy, analyzing changes in length, width, and thickness based on
different parameter combinations. Raut et al. [29] investigated how build orientation impacts both
cost  and  mechanical  properties,  identifying  optimal  orientations  for  minimizing  cost  and
maximizing strength.

Venkatasubbareddy et al. [30] explored the effect of process parameters on surface roughness and
dimensional accuracy using Taguchi Grey Relational Analysis, while Lui et al. [31] determined
optimal process parameters for mechanical properties using a grey relational grade. Similarly,
Shaikh et al. [32] identified key parameters such as layer thickness, raster width, and extrusion
temperature, with the highest GRG value observed for specific flatness errors, build time, and
surface roughness.

From the literature, it is evident that the Taguchi technique is one of the most commonly used
methods in both industry and research to identify optimal parameters in FDM. Grey Relational
Analysis  (GRA),  a  multi-objective  optimization  method,  has  been  widely  applied  for  FDM
optimization. However,  GRA has limitations in processing uncertain or ambiguous factors in
experimental  data.  To address this,  the Grey-Fuzzy Relational  Analysis  (GFRA) approach is
adopted, which provides more accurate results by incorporating fuzzy logic to derive the Grey
Fuzzy Relational Grade (GFRG).

2. Experimental Procedure

2.1 Work material

The filament material used in this work is PETG. When compared with base form of PET it is
less brittle and simpler to use. It doesn’t absorb water and it also has a low level of shrinkage. Fig
1.a  shows  the  tensile  specimens  produced  using  FDM  process  parameters.  After  the  test  is
performed the broken specimens are shown in fig 1.b.
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Fig.1. (a) shows the fabricated tensile specimens before a test. (b) Shows the fabricated tensile
specimen after the test.

2.2 Test procedure

To  estimate  the  tensile  strength(TS)  of  the  FDM  printed  specimens,  first,  the  specimens
dimensions are noted and the testing is done  using INSTRON 8801 universal testing machine
(UTM) as shown in Fig.3.The specimen testing’s are done at room temperature and an extension
speed of 2mm/min. While performing the experiments real-time data is recorded. With the help
of recorded data only the mechanical properties such as tensile strength, ductility is noted. The
mechanical properties are calculated with the actual dimensions of the fabricated specimen, not
with the dimensions of the CAD model.

Fig.2. (a) shows the universal testing machine for testing tensile specimens.(b) shows the tensile
specimen in the machine

2.3 Process parameter selection 

The experimental design for four factors and three levels, presented in Table-1. Experimental
plan for Taguchi’s L9 orthogonal array is shown in Table-2. 

Table: 1 Process parameters and their levels for FDM process

S.No Factor Parameter Symbol Level-1 Level-2 Level-3
1. A Layer Thickness(Lt) mm 0.1 0.2 0.3
2. B Build Orientation(Bo) Degrees 0 45 90
3. C Fill Density(Fd) % 30 60 90
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4. D Fill Pattern(Fp) - Line Hexa Tria

Table: 2 Experimental plans based on Taguchi’s L9.

Expt.
No

Layer
Thickness[mm]

Build Orientation
[°]

Fill  Density
[%]

Fill Pattern No of
specimens

1. 0.1 0° 30 Line 2
2. 0.1 45° 60 Hexa 2
3. 0.1 90° 90 Tria 2
4. 0.2 0° 60 Tria 2
5. 0.2 45° 90 Line 2
6. 0.2 90° 30 Hexa 2
7. 0.3 0° 90 Hexa 2
8. 0.3 45° 30 Tria 2
9. 0.3 90° 60 Line 2

3. Methodology

3.1 Error in the specimen dimensions.

The specimens are printed according to the ASTM standards. To evaluate the tensile strength of
plastic material the specimen is designed with ASTM D638 and is shown in fig.3. The front
views and top views of tensile specimen are shown below. The printing direction is shown by an
arrow in the front view. Each run is repeated 2 times, with a total of 18 tensile samples were
printed for this study. 

Fig.3.The CAD model dimensions of the tensile specimens.

3.2 Slicing Software

Flash print is the software used to slice the CAD model. Fig 4.shows the CAD model parts on the
flash print screen and the specimens on the platform. The parameters namely layer thickness (L t),

International Journal of Emerging Trends in Research 40



Special Issue – RAISE2024, 2025,, pp. 37-49

build orientation (Bo), fill density (Fd) and fill pattern (Fp) are changed according to the contents
in Table-2, while the other parameters were kept constant.

Fig.4.The specimens on the platform in flash forge software to fix process parameters.

Fig.5.The measured locations of the printed tensile specimen.

To find the accuracy in the dimensions, all the specimens printed were measured and compared
with  the  CAD model  dimensions.  A  total,  of  nine  measurements  are  taken  for  each  tensile
specimen in which the overall length (OL)-[mm] of the specimen, the overall width (OW)-(mm),
the width (W)-(mm), and the thickness (T)-(mm) is shown in fig.4. The dimensions of the printed
specimens  were  measured  using  venire  callipers.  The  overall  width  (OW)  can  be  found  by
averaging OW1 and OW2. The width (W) and the thickness (T) can be found by averaging W1,
W2, W3, and T1, T2, T3 respectively. 

Table-3 shows the measured dimensions of set-1 printed specimens. Measured dimensions of Set-
2 printed specimens are shown in Table-4.

Table-3: Measured dimensions of set-1:

Expt.No/
CAD model

OL
(100.0)-mm

OW
(19.0)-mm

W
(13.0)-mm

T
(6.0)-mm

1. 100.14 19.15 13.18 6.17

2. 100.27 19.32 13.29 6.16
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3. 100.23 19.37 13.35 6.54

4. 100.19 19.30 13.18 6.19

5. 100.38 19.41 13.28 6.26

6. 100.30 19.25 13.24 6.25

7. 100.25 19.42 13.29 6.39

8. 100.39 19.37 13.27 6.30

9. 100.65 19.17 13.22 6.35

Shows  the  measured  dimensions  of  the  printed  tensile  specimens.  It  is  observed  that  every
dimension measured is higher than the CAD model  dimension. For each specimen, the error
values are found using Equations (1) and (2).

E specimen=¿DCAD−Dspecimen∨¿                                                       (1)

E∑ ¿P=∑
P
Especimen¿                                                                         (2)

Where E specimen error in the dimension of the specimen.

DCAD is the dimension of the CAD model.

D specimen is the dimension of the printed specimen.

E∑ ¿P¿ Is the sum of errors in the dimensions of all the specimens.

The errors in the set-A and set-B are shown in Table-5 and Table-6.  The sum of dimensional
errors of set-A and set-B is shown in Table-7.

Table-4: Error in the dimensions of set-A

Expt.No/
CAD model

OL OW W T Sum of
dimensional

errors
1. 0.14 0.15 0.18 0.17 0.64

2. 0.27 0.32 0.29 0.16 1.04

3. 0.23 0.37 0.32 0.54 0.46

4. 0.19 0.30 0.18 0.19 0.86

5. 0.38 0.41 0.28 0.26 1.33

6. 0.30 0.25 0.24 0.25 1.05

7. 0.25 0.42 0.29 0.39 1.35

8. 0.39 0.37 0.27 0.30 1.33

9. 0.65 0.17 0.22 0.35 1.39
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Table-5: Error in the dimensions of set-B

Expt.No/
CAD
model

OL OW W T Sum of
dimensional

errors
1. 0.44 0.13 0.25 0.19 0.97

2. 0.24 0.25 0.23 0.06 0.78

3. 0.28 0.52 0.52 0.48 1.81

4. 0.16 0.27 0.16 0.23 0.82

5. 0.33 0.21 0.24 0.22 1.01

6. 0.32 0.21 0.25 0.48 1.26

7. 0.10 0.55 0.23 0.31 1.19

8. 0.19 0.38 0.37 0.35 1.29

9. 0.69 0.25 0.15 0.27 1.38

Table-6 :Average dimensions of both the sets:

Expt.No/
CAD
model

Sum of dimensional
errors in set-1

Sum of dimensional
errors in set-2

Error in the
dimensions

(Average of Set
1&2)

1. 0.64 0.97 0.80

2. 1.04 0.78 0.91

3. 1.46 1.81 1.63

4. 0.86 0.82 0.84

5. 1.33 1.01 1.17

6. 1.05 1.26 1.15

7. 1.35 1.19 1.27

8. 1.33 1.29 1.31

9. 1.39 1.38 1.38

3.3 Grey Relational Analysis

Grey  Relational  Analysis  (GRA),  also  called  Deng’s  Grey  Incidence  Analysis  model  was
developed by Julong Deng a Chinese professor. In GRG, the entire information is represented by
black and white colours. If there is no information then it is represented by black, and processing
all information is represented by white. In this concept, the experimental data is first normalized
within the range of 0 to 1. The procedure of converting the experimental data within the range of
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0 to 1 is known as normalization. Based on the normalized data the grey relational coefficient is
calculated  by  correlating  the  desired  and  actual  experimental  data.  By  averaging  the  grey
relational coefficients the grey relational grade is obtained. The overall quality characteristics of
the multi-response process depend on the calculated grey relational grade.

The data to be used in grey relational analysis must be pre-processed into quantitative indices for
normalizing raw data for another analysis. The process of converting the original sequence into a
decimal sequence between 0 to 1 is known as pre-processing. Depending on the requirement the
Equation (3) for larger the-better (LB) and Equation (4) for smaller-the-better (SB) are used for
data pre-processing.

.x i
¿=

xi(k )−min x i (k )
max x i (k )−minx i(k )

  i=1,2,.........m and K=1,2,........,n (3)

x i
¿=max ¿¿ (4)

Where x i(k ) and x i
¿(k) are the observed and normalized data, for ith alternative and kth criterion.

After data normalization,  the GRC is computed to express the relationship between the ideal and
the normalized data.

ξ i (k )=
Δmin+ζ Δmax
Δ0 i (k )+ζ Δmax

(5)

Where ∆Oi(k ) is the absolute value of the difference between  x i
0 (k )∧x i

¿(k ) . The distinguishing
sequence (ζ ¿ lies between o and 1 and is mainly responsible to expand or compress the range of
GRC  values.  Generally,  ζ=0.5  is  preferred.  On  the  other  hand,
Δmin=∀ jmin ϵi∀ kmin∨¿ x0 (k )−x j(k)∨¿is  the  smallest  value  ofΔ0 i,
Δmax=∀ jmax ϵi ∀ kmax∨¿x0 (k )−x j(k )∨¿ is the largest value of Δ0 i .  A higher GRC value for an
alternative indicates that it is closer to the optimal solutions concerning a particular criterion. By
averaging the GRC values GRG value is determined.

γi=
1
n∑k=1

n

ξi (k )(6)

Where n is the number of criteria/attributes.

3.4 Fuzzy logic

The fuzzy logic technique is used when there is any degree of uncertainty in making the decision.
The decision is partially true in some cases. In those cases, the membership function of range
from 0 to 1 is assigned for the trueness. 1 is assigned for completely true, and 0 is represented for
completely  false.  The  partially  true  statements  lie  between  0  and  1  [11].  The  fuzzy  logic
technique can be implemented by developing a Fuzzy Logic Controller (FLC). The layout of
fuzzy logic control is shown in fig.5.
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Fig.5. The architecture of fuzzy logic control

In the grey fuzzy logic approach, to have the interference between input and output a set of fuzzy
rules is developed. A set of such fuzzy rules is shown below:

Rule  1:  if  y1is  A1  and  y2is  B1 and  y3is  C1 and  y4 is  D1,  then  output(G)  is  E1,  else
Rule 2: if y1is A2  and y2is B2 and y3is C2 and y4 is D2, then output(G) is E1, else

Rule n: if y1is An  and y2is Bn and y3is Cn and y4 is Dn, then output(G) is E1, else

WhereAi,  Bi ,C i and  Di are  the  fuzzy  subsets  defined  by  the  corresponding  membership
functions, ie, μAi, μBi, μCi and μDi respectively. The fuzzy inference engine is the kernel of a fuzzy
system. The inference engine performs fuzzy reasoning of fuzzy rules while taking max-min
inference  for  generating  a  fuzzy  value,  μCo(G):μCo (G )=(
μA1( y1)˄ μB1 ( y2 )˄μC 1 ( y3 )˄μD 1( y4)˄μE1(G)¿

˅(μ¿¿ A2( y1)˄μB2 ( y2 )˄μC 2 ( y3 )˄μD2( y 4)˄μE2(G))¿

˅(μ¿¿ An( y1)˄μBn ( y2 )˄μCn ( y3 )˄μDn( y4)˄μEn(G))¿

Where ˄  is  the  minimum operation  and ˅ is  the  maximum operation.  Acentric  fuzzification
method is utilized to transform the fuzzy multi-response output, μCo (G) into a crisp value of GFR
:(G0)

Go=
∑G μCO (G)

∑ μCo (G)
(7)

4. Results and Discussion

The results of error in the dimensions, tensile strength (TS) and ductility (D) are tabulated in table
-8. Based on the values obtained in table-8, Grey Relational Grade (GRG) is calculated from
Grey Relational Analysis (GRA). Experiment number seven gives the highest grey relational
grade,  whereas experiment  number nine gives  the  lowest  grey relational  grade.   The control
parameters for FDM process are layer thickness, build orientation, fill density and fill pattern.

International Journal of Emerging Trends in Research 45



Special Issue – RAISE2024, 2025,, pp. 37-49

Three levels, each were set for the above four parameters. Error in the dimensions (mm), tensile
strength  (N/mm2),  and  ductility  (mm/mm)  are  the  multi-performance  characteristics  of  FDM
process. Based on three replicates in each experiment, the response was measured. Larger-the-
better type of quality characteristic (beneficial attributes) and is shown by equation (4). Based on
the equation normalized values are developed and is shown in table-9. The normalized values lie
within  the  range  0-1.With  the  help  of  normalized  data,  the  corresponding  Grey  Relational
Coefficient (GRC) and Grey Relational Grade (GRG) values are then computed and is shown in
table-10.  It  is  observed  that  experiment  number  seven  gives  the  optimal  value  out  of  nine
experiments. To reduce the uncertainty involved in the data and to derive a more realistic and
improved data fuzzy logic approach is used.

Table-7: Design of Experimentation with L9 orthogonal array and experimental results

Expt.N
o

Layer
Thickness -

mm

Build
Orientation

Fill
Density

- %

Fill
Pattern

Error in the
dimensions

- mm

Tensile
strength
- Mpa

Ductility
-

mm/mm
1 0.1 0° 30 Line 0.80 19.12 0.06848

2 0.1 45° 60 Hexa 0.91 12.86 0.04734

3 0.1 90° 90 Tria 1.63 32.18 0.04821

4 0.2 0° 60 Tria 0.84 27.50 0.05811

5 0.2 45° 90 Line 1.17 29.21 0.0492

6 0.2 90° 30 Hexa 1.15 10.45 0.03361

7 0.3 0° 90 Hexa 1.27 39.47 0.08104

8 0.3 45° 30 Tria 1.31 14.21 0.04258

9 0.3 90° 60 Line 1.38 8.00 0.02989

Fig .6. Shows the fuzzy logic designer.
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Fig.7. (a) Membership function for
error in dimensions

(b)Membership function for tensile strength (c) Membership function for ductility

If we want to add the rule, change the rule and delete the rule, the rule editor can be used which is

shown in fig.8. In the rule viewer, graphical representation of fuzzy logic reasoning is seen. The

number of rows in the rule viewer represents the fuzzy rules. In this work a total of 27 rules are

formulated. The inputs and outputs are represented in columns. Here, in the fig. 7, it is seen that a

total of four columns out of which three are input parameters and one is output parameter. 

Table-8. : Results of the conformation test.

Setting
level

Error in
dimension

s - mm

Tensile
strengt

h -
Mpa

Ductilit
y 
-
mm/mm

GFR
G

Improvemen
t in  GFRG

Initial
parameter
s

A1B1C1D
1 0.80 19.12 0.06848

0.72 _

Optimal
parameter
s

Predicted A1B1C3D
2

- - - 0.83 _

Experimen
t

A1B1C3D
2

0.90 42.5 0.09204 0.84 0.12

Conclusions

In this study, the process parameters influencing multiple performance characteristics of FDM
were  optimized  using  Taguchi’s  design  of  experiments.  The  optimal  process  parameters  for
improving layer thickness, build orientation, fill density, and fill pattern were determined using
Grey Relational Analysis (GRA). The Grey relational coefficients were utilized as inputs in the
fuzzy logic designer (MATLAB R2018a) to obtain the Grey Fuzzy Relational Grade (GFRG).
This approach effectively enhanced performance characteristics such as dimensional accuracy,
tensile strength, and ductility. The following conclusions are drawn based on the experimental
results and confirmation tests:

International Journal of Emerging Trends in Research 47



Special Issue – RAISE2024, 2025,, pp. 37-49

 The GFRG response table shows that higher GFRG values correspond to better multiple
performance characteristics.  The optimal parameter combination for the FDM process
was identified as A1B1C3D2, which minimizes dimensional errors and maximizes tensile
strength and ductility.

 ANOVA analysis reveals that fill density has the most significant impact on improving
tensile strength, while build orientation plays a crucial role in enhancing ductility.

 This optimization technique is economical and convenient for predicting optimal process
parameters in FDM.

 The  Taguchi  method,  combined  with  fuzzy  logic  using  Fuzzy-GRG,  simplifies  the
optimization  process  by  converting  multiple  performance  characteristics  into  a  single
performance metric.
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